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Abstract. We introduce and explore the concept of approximate shape invariance of parametrized
potential functions for non-relativistic one-dimensional quantum systems. The supersymmetric
partner V2 of an approximate shape-invariant potential V1 does not exhibit the same shape as the
original potential. However, by an appropriate choice of the values of the relevant parameters, V2
can still be approximated by V1. We also propose a measure for the degree of shape invariance
exhibited by a parametrized potential function. In order to illustrate these ideas we consider (a)
the Lillo–Mantegna potentials admitting exact analytic power-law ground-state wavefunctions, and
(b) a family of potentials whose ground-state eigenfunctions are given by the trial wavefunctions
employed by Cooper, Dawson and Shepard in the SUSY-based variational method.

1. Introduction

The applications of supersymmetry ideas to non-relativistic quantum mechanics developed
during the last 15 years have shed new light on many aspects of this branch of physics [1]. The
supersymmetry approach to quantum mechanics has provided a deeper understanding of the
analytically solvable Hamiltonians as well as a powerful set of new approximation schemes
for dealing with problems admitting no exact solution [1–14]. The supersymmetry techniques
have found interesting applications in atomic [15–17], nuclear [18–20] and condensed matter
physics [21].

The concept of shape invariance plays a fundamental role in the application of
supersymmetry methods to quantum mechanics [2–14]. It constitutes the basis of both (a)
a unified treatment of all the already known textbook cases of potentials admitting analytical
solution and (b) a systematic procedure to generate new exactly solvable systems.

The aims of this paper are:

(a) to consider the application of the supersymmetric approach to quantum systems that are
not shape invariant but, in spite of this, are still endowed with this symmetry, albeit in an
approximate fashion; and

(b) to introduce a measure of the degree of shape invariance exhibited by a given parametrized
family of potentials.

The paper is organized as follows. In section 2 we provide a brief review of the basic
notions of the quantum mechanical supersymmetric formalism. In section 3 we consider the
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concept of approximate shape-invariant (ASI) potentials and illustrate it by recourse to the
Lillo–Mantegna family of potentials exhibiting exact, power-law ground-state wavefunctions
[22]. In section 4 we introduce a measure for the degree of shape invariance. This measure is
computed numerically both for the Lillo–Mantegna potentials and for the potentials associated
with the Cooper–Dawson–Shepard trial wavefunctions. Finally, some conclusions are drawn
in section 5.

2. Quantum mechanics, supersymmetry and shape invariance

In this section we give a brief review of the supersymmetry and shape-invariance ideas as
applied to the one-dimensional Schrödinger equation (see [1] for a comprehensive review on
this subject). The quantum mechanical supersymmetric formalism revolves around specific
relations between the eigenenergies, eigenfunctions and phase shifts of the two Hamiltonians

H1,2 = − h̄2

2m

d2

dx2
+ V1,2 (1)

associated with the two supersymmetric partner potentials V1 and V2. The ground-state energy
of H1 is assumed to be zero. The Hamiltonian operators H1,2 are factorized as

H1 = A†A

H2 = AA†.
(2)

The operators

A = h̄√
2m

d

dx
+ W

A† = − h̄√
2m

d

dx
+ W

(3)

are given in terms of the so-called quantum superpotential W(x), which is related to the
potential functions V1,2 by

V1 = W 2 − h̄W ′
√

2m
V2 = W 2 +

h̄W ′
√

2m
(4)

the prime denoting derivative with respect to x.
The partner Hamiltonians H1 and H2 have exactly the same energy spectra, except for the

fact that H2 has one bound state less than H1 [1]. The eigenenergies and eigenstates of the
partner Hamiltonians H1,2 are related by

E
(1)
0 = 0

E(2)
n = E

(1)
n+1 (n = 0, 1, . . .)

(5)

and (
E
(1)
n+1

)−1/2
Aψ

(1)
n+1 = ψ(2)

n(
E(2)
n

)−1/2
A†ψ(2)

n = ψ
(1)
n+1 (n = 0, 1, . . .).

(6)

The superpotential W can be obtained from the ground-state wavefunction of H1 as

W(x) = − h̄√
2m

1

ψ
(1)
0

dψ(1)
0

dx
. (7)
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The concept of shape invariance constitutes the basis of a powerful and elegant
generalization of the well known procedure for solving the harmonic oscillator using raising
and lowering operators. A potential V (x; a) depending on a set of parameters a is said to be
shape invariant when it is related to its supersymmetric partner by the integrability condition
[1, 6, 7]

V2(x; a1) = V1(x; a2) + R(a1). (8)

The parameters a2 are function of the parameters a1,

a2 = f (a1) (9)

and R(a1) is an x-independent potential shift. The energy eigenvalues and eigenfunctions of
shape-invariant potentials can be obtained in an algebraic fashion. In order to do this one has
to consider the hierarchy of HamiltoniansHi (i = 1, 2, . . .), whereHi+1 is the supersymmetric
partner of Hi . The potential functions of successive supersymmetric partners of the hierarchy
are related by

Vi+1(x; ai) = Vi(x; ai+1) + R(ai). (10)

The eigenenergies of a shape-invariant potential are then given in the fashion [1]

En =
n∑
i=1

R(ai) (11)

where

ai+1 = f (ai) (i = 1, . . . , n− 1). (12)

All the usual exactly solvable potentials, as well as many other recently discovered ones, belong
to the class of shape-invariant potentials [1].

3. Approximate shape-invariant potentials

We will say that the family of potential functionsV1(x; a) parametrized by the set of parameters
a is approximately shape invariant if there exists an appropriate function a2 = f (a1) such that

V2(x; a1) � V1(x; a2) + R(a1). (13)

A simple but instructive illustration of the concept of approximate shape invariance that
we introduce here is provided by the family of one-dimensional potentials endowed with the
exact (normalized) power-law ground-state wavefunctions

ψ0(x; q, β) = K(q, β)1/2 [1 − (1 − q)βx2]
1

2(1−q) (14)

where the normalization factor K1/2 is given by

K(q, β) = 1

2
(3 − q)

�
[

1
2 + [1/(1 − q)]

]
� [1/(1 − q)]

√
(1 − q)β

π
(15)

and q and β are appropriate parameters. We are going to consider only values of the parameters
q and β such that (1 − q)β > 0. In that case, the wavefunction (14) is defined within the
interval of x-values corresponding to non-negative values of the quantity between brackets in
(14) (for more details see the comments after equation (16)). The probability density ρ = |ψ0|2
associated with the above wavefunctions has a Tsallis maximum entropy form [23]. These



6460 A Rigo et al

kinds of distributions provide useful generalizations of the Gaussian distribution that have
already found interesting applications in a variety of fields (see [24] and references therein).

It is easy to verify that the potential admitting (14) as ground-state wavefunction is given
by (from now on we take h̄ = 1 and m = 1)

V1 = 1

2

qβ2x2 − β

[1 − (1 − q)βx2]2
= W 2 − 1√

2
W ′. (16)

We will restrict our considerations to values of the Tsallis parameter q belonging to the interval
( 1

2 , 1), and to positive values of β. For these values of the parameters the potential V1 exhibits
two singularities (that is, infinite walls) at

x1,2 = ±
√

1

(1 − q)β
(17)

and has, consequently, an infinite number of bound states. The concomitant wavefunctions
are defined within the interval [x1, x2] and vanish at its extreme points. In particular, the
ground-state wavefunction (14) clearly vanishes at x1,2. In the limit case q → 1 the two points
x1,2 corresponding to the singularities of the potential V1 go to ±∞ and a harmonic oscillator
potential with natural angular frequency β is obtained. Quantum potentials exhibiting (after
an appropriate identification of parameters) the form (16), corresponding to q > 1, were
recently introduced by Lillo and Mantegna [22] in connection with the dynamical evolution
of non-Gaussian wavepackets.

The quantum superpotentialW associated withV1 can be determined from the ground-state
wavefunction by recourse of equation (7), yielding

W = β√
2

x

[1 − (1 − q)βx2]
(18)

which, applying equation (4), allows us to determine the supersymmetric partner potential

V2 = 1

2

(2 − q)β2x2 + β

[1 − (1 − q)βx2]2
= W 2 +

1√
2
W ′. (19)

If V1 were shape invariant there would exist appropriate functions

q ′ = q ′(q, β) (20)

and

β ′ = β ′(q, β) (21)

such that

V2(q, β) = V1(q
′, β ′) + R(q, β) (22)

with R independent of x. Unfortunately, that is not the case. However, it is still possible to
find a parameter transformation (20) and (21) yielding an approximate shape-invariant relation
defined by

V2(q, β) � V1(q
′, β ′) + R(q, β) (23)

with R independent of x; that is,

V2 = 1

2

(2 − q)β2x2 + β

[1 − (1 − q)βx2]2
� 1

2

q ′β ′ 2x2 − β ′

[1 − (1 − q ′)β ′x2]2
+ R. (24)
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As we shall see in section 4, an optimum transformation (20) and (21) can be determined
numerically by recourse to the maximization of the overlap between the ground-state
wavefunctions associated with the potentials V2(q, β) and V1(q

′, β ′). It will prove instructive,
however, to consider first a simple analytical version of the transformation (20) and (21) that,
although it is not the optimal one, (a) yields a very good approximation for the energy of the
first excited state of V1(q, β), (b) illustrates some important aspects of the approximate shape-
invariant character of this potential, and (c) provides a useful starting point for the analysis of
the optimal transformation.

In order to determine a simple (albeit not necessarily optimal) analytical ASI
transformation (20) and (21) it is reasonable to require that bothV2(q, β), and its approximation
V1(q

′, β ′) + R(q, β), should have their respective singularities located at the same positions.
Consequently, we obtain the relation

(1 − q ′)β ′ = (1 − q)β. (25)

If we also demand that both V2 and its approximation behave in the same way at their
singularities (that is, we require that the numerators of both V2(q, β) and V1(q

′, β ′) attain
the same value at the singularities) we obtain a second relation, namely,

(2 − q)β

(1 − q)
+ β = q ′β ′

(1 − q ′)
− β ′. (26)

These requirements lead to a quadratic equation for q ′

[3 − 2q](1 − q ′)2 + 2(1 − q)2(1 − q ′)− (1 − q)2 = 0 (27)

whose solutions are given by

(1 − q ′) = [(q − 1)± (q − 2)]
(1 − q)

3 − 2q
. (28)

Since, on one hand, 1
2 < q < 1, and, on the other, we wish for 1 − q ′ > 0, we choose the

minus sign and arrive at

q ′ = 2 − q

3 − 2q
. (29)

Note that

q = 1 → q ′ = 1

q = 1
2 → q ′ = 3

4 (30)

q ∈ (
1
2 , 1

) → q ′ ∈ (
3
4 , 1

)
.

We determine β ′ according to

β ′(1 − q ′) = β(1 − q) (31)

which leads to

β ′ = (3 − 2q)β. (32)

The analytical approximate shape-invariance scheme described by the transformations (29) and
(32) was obtained by requiring that both V2(q, β) and V1(q

′, β ′) exhibit the same asymptotic
behaviour at their (common) singularities x1,2 (see equation (17)). From now on we shall
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call this simple ASI scheme the asymptotic shape-invariant scheme (asymptotic ASI scheme).
Now, using (16), (19), (29) and (32) we write

V1(q
′, β ′)|x=0 = 1

2
(2q − 3)β (33)

and

V2(q, β)|x=0 = β

2
(34)

so that, in order that V1(q
′, β ′) and V2(q, β) coincide at the bottom of the potential well, we

need to add to V1(q
′, β ′) the quantity

R = β(2 − q) (35)

i.e.

V2(q, β) � V1(q
′, β ′) + β(2 − q). (36)

When q = 1 we find that (a) q ′ = q, (b) β ′ = β and (c) equation (36) reduces to the exact
shape-invariance relation of the harmonic oscillator. Let us consider what happens in the
general case q ∈ ( 1

2 , 1). Since (a) E(2)
0 = E

(1)
1 and (b) the ground state of V1(q, β) (or of

V1(q
′, β ′)) vanishes, we find that the first excited energy level of V1 is

E
(1)
1 = E

(2)
0 � β(2 − q). (37)

The second energy level will be given by

E
(1)
2 � β(2 − q) + β ′(2 − q ′). (38)

Let us now find the general expression for the eigenvalues E(n)
1 within the present asymptotic

ASI scheme. We have

E(1)
n �

n−1∑
i=0

R(β(i), q(i)) (39)

=
n−1∑
i=0

β(i)(2 − q(i)) (40)

where β(0) and q(0) denote the starting set of parameters (that is, those characterizing V1),
β(1) = β ′, q(1) = q ′, and

q(i+1) = 2 − q(i)

3 − 2q(i)

β(i+1) = (3 − 2q(i))β(i).

(41)

Now, because of equation (31), we have β(1 − q) = C = constant. Hence we can write

R = C p where p = (2 − q)/(1 − q). (42)

Equations (29) and (32), that define the transformation laws for β and q, imply that the
parameter p obeys the simple transformation rule

p′ = p + 2. (43)
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Consequently, the energy levels provided by the asymptotic ASI scheme are

E(1)
n � C

[
np +

n−1∑
i=1

2i

]

= Cn(p − 1) + Cn2. (44)

In the above equation p = (2 − q)/(1 − q) denotes the starting value of this parameter. It
can be verified from equations (42) and (43) that the result of performing n times the (q, β)
transformation defined by equations (29) and (32) is given by

q(n) = 1 − 1 − q

1 + 2n(1 − q)
(45)

and

β(n) = β[1 + 2n(1 − q)]. (46)

It follows from (45) that limn→∞ q = 1. This means that the hierarchy of approximate shape-
invariant potentials obtained by the successive application of the (q, β)-map (29)–(32) relaxes,
for large values of n, to a harmonic oscillator potential. However, since limn→∞ β = ∞, the
frequency of the limiting harmonic oscillator diverges. The combined behaviours of q and β
lead, for large n, to an infinite square-well-like spectra with energy levels growing as n2 (see
equation (44)).

An improved implementation of the asymptotic ASI scheme, leading to a better
approximation for the energy eigenvalues, can be obtained by recourse to a first-order
perturbation correction. In our example, the supersymmetric partner potential V2(q, β) is
approximated by a potential V1(q

′, β ′) with the same shape as the original one but with
appropriately chosen new parameters. The essential point is that we know exactly the ground-
state energy and wavefunction of V1(q

′, β ′). In order to determine a better approximate
value for the ground-state energy of V2(q, β) we can consider V1(q

′, β ′) as our ‘unperturbed’
potential, and regard the difference

�V (x) = V2(x; q, β)− V1(x; q ′, β ′) (47)

as a small perturbation. The concomitant first-order correction to the ground-state energy of
V2 which, in turn, also constitutes a correction to the first excited energy level of V1, is

�E
(1)
1 = 〈ψ0(x; q ′, β ′)|�V |ψ0(x; q ′, β ′)〉

= β(2 − q)K(q ′, β ′)
[∫

[1 − (1 − q)βx2]
q′

1−q′ dx

]
− β(2 − q). (48)

The above expression leads, after some algebra, to an improved value for E(1)
1 given by

Ẽ
(1)
1 = β(2 − q) + �E

= 1

2
β(2 − q)

[
7 − 5q

3 − 2q

]
. (49)

This new (and better) approximation for E(1)
1 allows us to formulate an improved version of

our asymptotic ASI scheme, based on a new choice for the quantity R(q, β) appearing in the
approximate shape-invariance relation (23). We now adopt

R̃(q, β) = 1

2
β(2 − q)

[
7 − 5q

3 − 2q

]
. (50)
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Figure 1. Plots of the exact first excited eigenenergy
of V1(q, β) and the first excited state eigenenergies
corresponding to: (a) the asymptotic ASI scheme, (b)
a harmonic oscillator fitting the bottom of the potential
and (c) an infinite square well with its walls located at
the singular points of V1(q, β).

The approximate energy eigenvalues provided by the new asymptotic ASI scheme are

Ẽ(1)
n =

n−1∑
i=0

R̃(q(i), β(i)). (51)

The exact eigenenergies of the first excited state of V1, as well as the approximated
ones yielded by the improved asymptotic ASI scheme, are plotted in figure 1 as a function
of q. The first excited eigenenergies corresponding to (a) infinite square wells having their
‘walls’ located at the singular points of V1, and (b) harmonic oscillator potentials, fitting the
potential function V1 at x = 0, are also depicted. In these last two cases the potentials
were shifted in order to make their ground-state eigenenergies equal to zero. The first
excited state energy eigenvalues provided by the asymptotic ASI scheme are seen to be in
very good agreement with the numerically computed exact ones. The success of the simple
asymptotic ASI scheme constitutes a clue indicating that the parametrized potential V (q, β)
is endowed, to a remarkable degree of approximation, with the symmetry of shape invariance.
A different kind of ASI scheme can be obtained by comparing the Taylor expansion of both
V2(q, β) and V1(q

′, β ′) + R(q, β) around x = 0. The quantities q ′, β ′ and R are, in this
case, those that make the first three non-vanishing coefficients of the above-mentioned Taylor
expansion coincide. This procedure also leads to closed analytical expressions for both q ′

and β ′, albeit considerably more complicated than those provided by the asymptotic ASI
scheme. In the next section we shall determine, in numerical fashion, the optimum ASI map
(20) and (21).
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4. The optimal ASI parameter transformation

4.1. A measure of the degree of shape invariance

Let us consider a family of normalized wavefunctions

�
(1)
0 (x;α) (52)

parametrized by the set of parameters α. The �
(1)
0 (x;α)s are regarded as the ground-state

wavefunctions of a corresponding family of one-dimensional parametrized potentialsV1(x;α).
Using the functions (52) it is possible to obtain the associated superpotentials W(x;α) and the
concomitant supersymmetric partner potentials V2(x;α). Now, let �(2)

0 (x;α) be the (exact)
ground-state wavefunctions of the partner potentials. A simple but important consequence of
the shape-invariance integrability condition (8) is that it can be reformulated in terms of the
ground-state wavefunctions associated with the potentials V1,2. The two potentials appearing
in the shape-invariance relation (8) have the same form, differing only in the constant energy
shift R. Hence, the shape-invariance condition (8) implies the existence of an appropriate
set of parameters α′ such that the ground-state wavefunctions associated, respectively, with
V2(x;α) and V1(x;α′), are the same. More explicitly,

�
(2)
0 (x;α) = �

(1)
0 (x;α′). (53)

On the basis of the above considerations we here propose to use, as a measure of the degree
of shape invariance of the family of potentials V1(x;α), the quantity

I (α) = max
{α′}

〈�(1)
0 (α′) | �(2)

0 (α)〉

= max
{α′}

∫
�

(1)
0 (x;α′)�(2)

0 (x;α) dx. (54)

The meaning of I (α) is clear. It measures how well the ground state of the supersymmetric
partner potentialV2(x;α) can be represented by an appropriately chosen member of the original
family of wavefunctions (52). Note that the above measure of shape invariance depends itself
on α. By definition, the parametrized potential V1(x;α) is shape invariant if

I (α) = 1 (55)

for all values of the parameter α. If this is not the case, the set of parameters α′ provided by
(54) determine the optimal ASI scheme associated with the family of potentials V1(x;α) (or,
equivalently, the best ASI scheme associated with the wavefunctions �(1)

0 (x;α)). In the next
two subsections we are going to apply these ideas to two particular examples: (a) the family of
Tsallis MaxEnt wavefunctions and (b) the variational ansatz of Cooper, Dawson and Shepard
(CDS) [8].

4.2. Tsallis MaxEnt wavefunctions

We have computed numerically, for the parametrized family of Tsallis MaxEnt wavefunctions
(14), the values of the parameters q ′(q, β) and β ′(q, β) that maximize the overlap (54). These
two functions provide, for the family of potentials (16), the optimal ASI map (20) and (21). In
order to verify how well the potentialsV1(q, β) comply with the shape-invariance symmetry, we
can compare the (approximate) eigenenergies obtained from the optimal ASI scheme with the
numerically computed exact ones. Two ingredients are needed for the approximate evaluation
of the energy eigenvalues on the basis of the ASI scheme (see equation (39)). On one hand,
the optimal ASI map (obtained by the overlap maximization procedure) is required. On the
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Figure 2. Plots of the exact E
(1)
2 , E

(1)
3 and E

(1)
4

eigenenergies of V1(q, β) and of the corresponding
approximations obtained by recourse of (a) the
asymptotic ASI scheme and (b) the optimal ASI
transformations.

Figure 3. The potential V1 corresponding to a value
q = 0.55 of the Tsallis parameter and to β = 1 (upper
figure) and the associated partner potentialV2, its optimal
ASI approximation, and their respective ground-state
eigenfunctions (lower figure).

other hand, we need an appropriate expression for R(q, β). Remember that R(q, β) is just the
energy E(1)

1 of the first excited state of V1(q, β). As we have seen in section 3, the asymptotic
ASI scheme yields a very good approximation for E(1)

1 , namely, equation (50). Consequently,
the energy eigenvalues E(1)

n of V1(q, β) can be computed by inserting into (51) the optimal
ASI transformation and then adopting, for R(q, β), the expression (50) for the first excited
eigenenergy E(1)

1 provided by the asymptotic ASI scheme.
The exact eigenenergies E

(1)
2 , E

(1)
3 and E

(1)
4 obtained by numerically solving the

Schrödinger equation are compared in figure 2 with (a) the eigenenergies yielded by the
asymptotic ASI scheme and (b) the eigenenergies associated with the optimal ASI map. As
was already explained, the energy values provided by the optimal ASI map were computed as if
the potential V1(q, β) were shape invariant. The agreement between these ASI eigenenergies
and the exact ones is, again, very good. This means that, even if the parametrized family of
potentials V1(q, β) is not shape invariant, it is nevertheless endowed with this symmetry to a
high degree of approximation. In the upper panel of figure 3 we exhibit the shape of V1(q, β)

for q = 0.55 and β = 1. In the lower panel of that figure we compare the potential V2(q, β)

with its optimal ASI approximation V1(q
′, β ′) + R(q, β). The ground-state wavefunctions
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Figure 4. The ASI maps obtained from (a) the
asymptotic ASI scheme, (b) the fitting of the first three
terms of the Taylor series expansion around x = 0
of V2 and of its ASI approximation and (c) by the
maximization of the overlap I (q, β) (see equation (54)).

associated with these two potentials are also depicted. The potential V2 closely resembles its
ASI approximation for almost the entire range of allowed x-values. The potential V2 starts
to differ from its approximation only when we approach the singularities of V2. The ground-
state wavefunctions of V2 and of its ASI approximation are also seen to be of quite similar
character.

The ASI maps q ′(q) and β ′(q, β) are depicted, respectively, in figures 4(a) and (b). Those
figures depict the ASI maps calculated by recourse to:

(a) maximizing the overlap between the ground-state wavefunctions of V2 and its ASI
approximation;

(b) the asymptotic ASI scheme; and
(c) fitting the first three terms of the Taylor expansion around x = 0 of both V2 and its ASI

approximation.

Our calculations indicate that q ′(q) does not depend on β.

4.3. The Cooper–Dawson–Shepard wavefunctions

As a second example of our concept of approximate shape invariance we are now going
to compute the shape-invariant measure I corresponding to the family of ground-state
wavefunctions

"0 = N exp
(−b|x|2a) = N exp

(−b(x2)a
)

(56)
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which are parametrized by the two real numbers a and b (N = N(a, b) is a normalization
factor). (An interesting study of shape-invariant potentials that depend upon n parameters is
that of Cariñena and Ramos [25].) The wavefunctions (56) have been recently applied as a trial
variational ansatz within the SUSY-based variational method recently proposed by CDS [8].
Before analysing the degree of shape invariance of the family (56) it is worth briefly reviewing
the CDS approach, since interesting connections can be established between the concept of
an approximate shape invariant, on one hand, and the SUSY-based variational method, on
the other. The essence of the CDS scheme boils down to the following procedure. Given an
appropriate variational ansatz, the approximate ground-state eigenenergies and eigenfunctions
of a potential V1 are computed in the usual way. The approximate ground-state wavefunction
is then used to determine the superpotential W and, from W , the supersymmetric partner V2.
Then, the variational ansatz is used again, this time to determine an approximate ground-state
wavefunction for V2. Finally, an approximated first excited state for V1 is obtained by recourse
to equation (6). A similar procedure can be applied once again in order to determine higher-
order excited states. The CDS method differs from the standard one in the way in which the
variational approximation for the excited states is dealt with. Within the CDS approach, one
does not perform a constrained variational procedure in order to guarantee the orthogonality
of the eigenstates. Instead, one always deals with the unconstrained variational computation
of the ground states associated with a supersymmetric hierarchy of potentials [8]. In [8] the
CDS method was applied to the anharmonic oscillator using for the ground-state wavefunction
the ansatz (56). It was shown in the above referred to paper that the CDS scheme provides
good approximations for low-n excited states, but the approximation deteriorates when higher
excited states are considered.

The superpotential associated with the parametrized ground-state wavefunction (56) is

W =
√

2 ab x (x2)a−1. (57)

The concomitant partner potentials are thus given by

V1 = 2a2b2(x2)2a−1 − (2a − 1)ab(x2)a−1 (58)

and

V2 = 2a2b2(x2)2a−1 + (2a − 1)ab(x2)a−1. (59)

Since V1 is not a shape-invariant potential, the ground-state wavefunction �
(2)
0 of V2 cannot

be exactly described by the ansatz (56). In order to evaluate the shape-invariance measure
I (a, b) (see (54)), we have to find special values (a ′, b ′) of the parameters a, b that yield the
wavefunction of the form (56) that provides the best representation of�(2)

0 . This is achieved by
maximizing the overlap of such a wavefunction with�(2)

0 (the exact ground-state wavefunction
�

(2)
0 of V2 was obtained numerically by solving the concomitant Schrödinger equation by

recourse to a standard numerical algorithm). The results of this extremizing process are
illustrated in figures 5 and 6. The optimum parameters (a′, b′) are depicted in figure 5 as a
function of the original parameters (a, b). It was found numerically that neither the parameter
a′ nor the measure I depend on b. On the other hand, b′ depends on both a and b. The optimum
overlap I (a) is plotted in figure 6. The overlap I (a) (for a > 1) is a monotonically decreasing
function of a, but remains, always, quite close to unity. This constitutes part of the explanation
of the success exhibited by the wavefunctions (56) as a trial variational ansatz within the CDS
SUSY-based variational method.
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Figure 5. The optimal ASI maps a′(a) and b′(a, b) for
the family of wavefunctions (56), obtained by recourse
to the maximization of the overlap I (a, b) (see text).

Figure 6. The maximum value of the overlap I (a) (see equation (54)) associated with the CDS
parametrized family of wavefunctions (56).

4.4. Some general comments on approximate shape-invariant potentials

The two examples of approximate shape invariance discussed in this paper illustrate various
aspects of this concept. In the case of the Lillo–Mantegna potentials (and their associated
Tsallis ground-state wavefunctions) we were able to obtain, from the analytical form of the
partner potentials V1 and V2, a simple explicit expression for an ASI parameter transformation
(20) and (21). However, we may have a parametric family of potentials exhibiting a high
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degree of shape invariance even if we do not know an explicit expression for the concomitant
ASI transformation. The measure of shape invariance I that we have advanced in this paper
provides a useful tool for numerically assessing the degree of shape invariance of a given
family of potentials (or a given family of ground-state wavefunctions). As an illustration
of this procedure we have computed numerically the measure I associated with the CDS
wavefunctions (57), finding that these wavefunctions (or the associated potentials (58)) are
indeed endowed with an approximate shape invariance. We also obtained, in numerical
fashion, the best ASI parameter transformation, which is exhibited in figure 5. This kind
of graph provides useful information concerning the relationship between the eigenfunctions
corresponding, respectively, to the original potentials and to their supersymmetric partners. In
the case of the CDS example, it is clear from figure 5 that the best ASI transformation associated
with the CDS wavefunctions may be approximated by simple analytical expressions (such as
those discussed in connection with the Lillo–Mantegna potentials).

We believe that our measure of shape invariance I may constitute the basis of a set of
numerical tools which are adequate for studying the shape-invariance properties of families of
potentials (as we exemplified with the CDS ansatz). In those cases where there is numerical
evidence for a high degree of (approximate) shape invariance, the numerical results obtained
(for instance, the optimal ASI transformation) may provide useful clues for the obtention of
explicit analytical ASI transformations (such as (20) and (21)). A suggestive analogy with the
study of integrable classical Hamiltonian systems can be established here. It is well known
that the numerical integration of the concomitant classical equations of motion may provide
one with important evidence concerning the integrability of certain systems. There are various
numerical tools, like the computation of Poincaré surfaces of section, or the computation of
Lyapunov exponents, that can be used for this task. As a matter of fact, there have been
important instances of classical Hamiltonian systems whose integrability was first suspected
on the basis of numerical evidence. The celebrated Toda lattice constitutes a famous example
[26].

One would like to have simple criteria to know in advance whether (or, at least, some
hints to formulate educated guesses as to whether) a given parametric family of potentials
is endowed with the property of approximate shape invariance. This problem has some
similarities with the problem of finding a good ansatz for trial wavefunctions in connection
with variational approximate methods. Indeed, as was already mentioned, the search for
approximate shape-invariant families of potentials (or ground-state wavefunctions) is closely
related to the problem of implementing the SUSY-based variational method. A systematic
study of particular families of potentials, with the aid of the numerical procedures that we have
already applied when we considered the CDS ansatz, seems to be an indispensable first step in
order to obtain further insights in connection with the general characterization of approximate
shape-invariant potentials. An interesting possibility for further research is provided by the
family of ground-state wavefunctions depending on the three parameters a, b and q, given
by

φ0(x) = D(a, b, q)
[
1 − (1 − q)β

(
x2

)a ]1/2(1−q)
(60)

where D(a, b, q) is an appropriate normalization factor. The CDS ansatz (56) is recovered as
a particular case of the above family of parametric wavefunctions in the limit q → 1. Besides,
the ground-state wavefunctions of the Lillo–Mantegna potentials correspond to the case a = 1.
A systematic study of the (approximate) shape-invariance properties of this multiparametric
family of potentials will be addressed elsewhere.
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5. Conclusions

We have here introduced and investigated the concept of approximate shape invariance for
parametrized families of one-dimensional potential functions (or parametrized ground-state
wavefunctions) in non-relativistic quantum mechanics. As an illustration, we have studied
in some detail the (approximate) shape-invariant features of a family of potentials whose
ground-state wavefunctions exhibit a Tsallis MaxEnt form. This family of potentials exhibits
a remarkable degree of shape invariance. A simple analytical asymptotic ASI scheme provides
very good approximate energies for the first excited states. Higher excited eigenenergies
evaluated using the optimum ASI parameter transformation are also in good agreement with
the corresponding exact energies obtained by numerically solving Schrödinger’s equation. It is
worth mentioning that, as far as we know, the Tsallis family of potential functions (16) cannot be
obtained by adding a small perturbation δV to a known (exactly) shape-invariant potential. In
particular, the potentials (16) cannot be regarded as small perturbations of harmonic oscillator
potentials (see figures 1 and 3). As a second example we computed numerically the optimum
ASI transformation associated with the parametrized family of wavefunctions used by Cooper
et al as a trial ansatz within the SUSY-based variational method. This family also exhibits
a high degree of shape invariance. These results are fully consistent with the successful
performance of the CDS trial wavefunctions within the SUSY-based variational method, as
reported in [8].

We believe that further research on the concept of approximate shape invariance may
contribute to our understanding of both the exactly solvable and the non-soluble one-
dimensional quantum potentials. In particular, it may shed new light on the properties of
supersymmetry-inspired approximate methods applied for solving the Schrödinger equation
(such as the SUSY-based variational technique).
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